API documentation
Hilbert Space
basis_operators(operators, sparse)
Transform from second quantized operators to matrix representation in the Fock-space.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
operators
|
list[Expr]
|
A list of sympy expressions representing the operators. |
required |
sparse
|
bool
|
A boolean flag indicating whether to use sparse matrices. |
required |
Returns:
| Type | Description |
|---|---|
dict[Expr, (ndarray | csr_array):]
|
A dictionary where the keys are the input operators and the values are their |
dict[Expr, (ndarray | csr_array):]
|
corresponding matrix representations in the Fock-space. |
Note
- The
operatorslist does not require its elements to beFermionOp. - The fermion ordering follows the ordering in the list.
Source code in second_quantization/hilbert_space.py
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | |
find(s, ch)
Find all indices of a character in a string.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
s
|
str
|
The string to search in. |
required |
ch
|
str
|
The character to search for. |
required |
Returns:
| Type | Description |
|---|---|
List[int]
|
A list of indices where the character is found. |
Note
Taken from: https://stackoverflow.com/questions/11122291/how-to-find-char-in-string-and-get-all-the-indexes Author: Stack Overflow user Lev Levitsky License: CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0/)
Source code in second_quantization/hilbert_space.py
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 | |
make_dict_callable(hamiltonian_dict)
Create a callable function from a dictionary of SymPy expressions and NumPy arrays.
This function takes a dictionary where keys are symbolic expressions (containing free symbols) and values are NumPy arrays, and creates a callable function that evaluates the weighted sum of the arrays based on the symbolic expressions.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
hamiltonian_dict
|
dict[Expr, ndarray]
|
A dictionary where keys are SymPy expressions (which may contain free symbols) and values are NumPy arrays of the same shape. |
required |
Returns:
| Type | Description |
|---|---|
callable
|
A callable function that takes values for all free symbols found in the |
callable
|
dictionary keys and returns the weighted sum: Σ(expr_value * array) where |
callable
|
expr_value is the numerical evaluation of each symbolic expression. |
Raises:
| Type | Description |
|---|---|
ValueError
|
If any symbol names would be converted to Dummy variables by SymPy's lambdify function. This typically happens with special characters or reserved names. |
Example
import sympy as sp
import numpy as np
# Define symbolic parameters
x, y = sp.symbols('x y')
# Create dictionary with symbolic expressions and matrices
ham_dict = {
x: np.array([[1, 0], [0, 0]]),
y: np.array([[0, 1], [1, 0]])
}
# Create callable function
func = make_dict_callable(ham_dict)
# Evaluate at specific parameter values
result = func(x=2.0, y=1.5) # Returns 2.0 * first_matrix + 1.5 * second_matrix
Source code in second_quantization/hilbert_space.py
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 | |
parity_operator(operators, sparse)
Generate the parity operator for a list of fermionic operators.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
operators
|
list[Expr]
|
A list of sympy expressions representing the fermionic operators. |
required |
sparse
|
bool
|
A boolean flag indicating whether to return a sparse matrix. |
required |
Returns:
| Type | Description |
|---|---|
ndarray | csr_array
|
A diagonal matrix representing the parity operator, where the diagonal elements |
ndarray | csr_array
|
are 0 for even parity and 1 for odd parity. |
Source code in second_quantization/hilbert_space.py
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 | |
partial_trace_generators(subset, all_operators, sparse, operator_dict=None)
Generate the projectors required to compute the partial trace of a subset of operators.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
subset
|
list[Expr]
|
Subset of operators to trace out. |
required |
all_operators
|
list[Expr]
|
A list of sympy expressions representing the fermionic operators of the system. |
required |
sparse
|
bool
|
Bool to set whether dense numpy arrays or sparse scipy arrays are used. |
required |
operator_dict
|
dict
|
Optional dictionary mapping operators to their matrix representations. |
None
|
Returns:
| Type | Description |
|---|---|
ndarray
|
numpy array with the projectors that trace out the subset of operators specified in the |
ndarray
|
argument. The final trace is taken by projecting a matrix M as |
ndarray
|
np.sum([p[:,i,:] @ M @ p[:,i,:].conj().T for i in range(p.shape[1])]). |
Source code in second_quantization/hilbert_space.py
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 | |
string_basis(fermions)
Generate a list of bitstrings representing the occupation of fermions.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
fermions
|
List[Expr]
|
List of fermionic operators. |
required |
Returns:
| Type | Description |
|---|---|
List[str]
|
List of bitstrings representing all possible occupation states. |
Example
For 2 fermions, returns ['00', '01', '10', '11'] representing the four possible occupation states.
Source code in second_quantization/hilbert_space.py
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | |
symbolic_basis(fermions)
Generate a list of symbolic fermionic operators corresponding to the occupation of fermions.
This function creates the symbolic representation of all possible occupation states in the fermionic Fock space for the given set of fermionic operators.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
fermions
|
List[Expr]
|
List of fermionic operators. |
required |
Returns:
| Type | Description |
|---|---|
List[Expr]
|
List of symbolic fermionic operators representing all possible occupation states. |
List[Expr]
|
The first element is always the vacuum state (represented as |
List[Expr]
|
followed by all single-particle states, two-particle states, etc. |
Example
For 2 fermions [c, d], returns:
- [1, d†, c†, c†*d†] representing vacuum, single occupations, and double occupation.
Source code in second_quantization/hilbert_space.py
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 | |
to_matrix(expression, operators, sparse, operator_dict=None)
Transform a sympy expression containing fermionic operators to matrix representation.
Takes a symbolic expression with fermionic operators and converts it to a dictionary containing the matrix representation of each term, grouped by symbolic coefficients.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
expression
|
Expr
|
A sympy expression containing fermionic operators. |
required |
operators
|
list[FermionOp]
|
A list of fermionic operators defining the basis. |
required |
sparse
|
bool
|
If True, the matrices will be in sparse format. Otherwise, they will be dense. |
required |
Returns:
| Type | Description |
|---|---|
dict[Expr, ndarray | csr_array]
|
A dictionary where the keys are sympy expressions (symbolic coefficients) and |
dict[Expr, ndarray | csr_array]
|
the values are the corresponding matrix representations in either dense or sparse format. |
Example
import sympy as sy
from sympy.physics.quantum.fermion import FermionOp
from sympy.physics.quantum import Dagger
# Define symbolic parameters and operators
t = sy.Symbol('t')
c = FermionOp('c')
d = FermionOp('d')
# Define an expression
expr = t * Dagger(c) * d
# Convert to matrix form
matrices = to_matrix(expr, [c, d], sparse=False)
Source code in second_quantization/hilbert_space.py
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 | |
to_operators(matrix, basis)
Convert matrices back to symbolic fermionic operator expressions.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
matrix
|
dict[Expr, ndarray | csr_array] | ndarray | csr_array
|
The matrix to be converted. It can be a dictionary with sympy expressions as keys and numpy arrays or scipy sparse arrays as values, or it can be a numpy array or a scipy sparse array directly. |
required |
basis
|
list[Expr]
|
A list of sympy expressions representing the basis operators. |
required |
Returns:
| Type | Description |
|---|---|
Expr
|
The normal ordered operator expression corresponding to the input matrix. |
Source code in second_quantization/hilbert_space.py
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | |
Pauli strings
PauliDecomposition(matrix, PauliStringInit='')
Computes the Pauli decomposition of a square matrix.
Iteratively splits tensor factors off and decomposes those smaller matrices. This is done using submatrices of the original matrix. The Pauli strings are generated in each step.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
matrix
|
Matrix to be decomposed (Preferably numpy array/scipysparse). |
required | |
sparse
|
Whether matrix is in sparse format. |
required | |
PauliStringInit
|
For recursive computation. |
''
|
Returns:
| Type | Description |
|---|---|
|
decomposition/outString: String of 1XYZ with their factors. |
Source code in second_quantization/pauli_strings.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | |